
Unit-8
Structure and Union

Introduction to Structure:

•Structure is a user defined data type.
•A structure is a collection of one or more variables, possibly of
different data types (e.g. int, float, char) grouped together under a
single name for convenient handling.
•Structure help to organize data, particularly in large programs, because
they allow a group of related variables to be treated as a single unit.
•Once the structure has been declared, we can create a variable of its
type.
• In some language, structures are know as records and the elements of
structure are known as fields or members or components.

Declaration of Structure:
Syntax: (For defining structure)

struct tagname
{

data_type element1;
data_type element2;

};
Where struct is a keyword and we must use for defining structure and tagname is a
structure name and we can give any name to the structure.
Note: Every structure must end with a semicolon.

Example:

 ----it is combined a single data type of user defined type.

{
int eid;
char ename[20];
float esalary;

}e;

Note: we can identify the structure with the help of tag_name or identity name.

struct emp

Declaration of Structure Variable:

Method-1:
struct book
{

int pages;
char author[20];
float price;

}b;

Where b is the structure variable for the book structure.

Continue…
Method-2:
struct book
{

int pages;
char author[20];
float price;

};
struct book b;

Memory Allocation of Structure:
-Just defining the structure, it does not get the memory allocation.
-Whenever we declare variable then only it gets memory allocation.

0 1 2

- 2 bytes for integer
- 20 bytes for ename because each character occupies 1 bytes
- 4 bytes for float.

eid ename esal2046
e

Internal Pointer Variable

 2046 2048…………2067 2068

26 Bytes

Initialization and accessing of structure:
• Once we allocate the memory, then we can access(retrieve and store)the elements

of that structure.
• Structure variable is access with the help of accessor and accessor is a dot operator

(.)
• Example: e.eid, e.ename, e.esalary
Initialization:

Method-1:
struct book
{

int pages;
char author[20];
float price;

}b={100, “Ram”, 545.5};

Continue…
Method-2:
struct book
{

int pages;
char author[20];
float price;

};
struct book b={100, “Ram”, 545.5};

Using dot operator:
struct book
{

int pages;
char author[30];
float price;

};
struct book b;
b.pages=100;
strcpy(b.author, “Ram”);
b.price=545.5;

Example of access of structure element:
#include<stdio.h>
#include<conio.h>
struct emp
{

int eid;
char ename[20];
float esalary;

};
void main()
{

struct emp e={101, "Kiran", 54000.5};
printf("Your Details:\n");
printf("EID=%d\n",e.eid);
printf("ENAME=%s\n",e.ename);
printf("ESALARY=%.2f",e.esalary);
getch();

}

Program to find the size of the structure:
#include<stdio.h>
#include<conio.h>
struct emp
{

int eid;
char ename[20];
float esalary;

};
void main()
{

struct emp e;
printf("Size of emp:%d Bytes\n",sizeof(e));
printf("Size of emp:%d Bytes",sizeof(struct emp));
getch();

}

Local Structure Global Structure
- Declaration of structure inside a particular
function is called local structure.

- Declaration of structure outside of all the
function is called global structure.

- It is accessible only inside this function. - It is accessible from every where of the
program.

Example:
 main ()
 {
 struct local
 {
 int a,b;
 };
 struct local l; ---it is accessible
 }
 check ()
 {
 struct local l; ---it is not accessible
 }

Example:
 struct global
 {
 int a,b;
 };
 main ()
 {
 struct global g; ---it is accessible
 }
 check ()
 {
 struct local g; ---it is accessible
 }

Array of Structure:

•A collection of similar type of structure placed in a common variable
name is called array of structure.
•Declaring an array of structure is same as declaring an array of
fundamental types. Since an array is a collection of elements of the
same type. In an array of structures, each element of an array is of the
structure type.

Example:

struct emp
{

int eid;
char ename[20];
float esalary;

};
struct emp e[3];

How actually memory gets allocate ?

e[0].eid e[0].ename e[0].esalary

e[1].eid e[1].ename e[1].esalary

e[2].eid e[2].ename e[2].esalary

2000 3000 4000

1000
1000 1024 1058e

0 1 2

 eid ename esalary

 eid ename esalary

 eid ename esalary

e[0]

e[1]

e[2]

2000

3000

4000

All the three record gets the memory allocation in
different location.

Union:

•Union is a user defined data type.
• In Union, we can store any type of data but we can’t store all the
elements at a time. So we can store one by one element.
•We can process all the elements of union one after another when it is
required.
•Structure is more easy and more flexible than union.
• In union, we can define n number of elements at a time but we can’t
access all the elements at a time (i.e. we can process only one element
at a time).
•To access the element in union, we also use the dot operator.

Declaration of Union:

Syntax:
union tagname
{

data-type element-1;
data-type element-2;
…………………………….
data-type element-n;

};

Example:

union std
{

int i;
float h;
char c;

};
union std u;

Here, all the three variable sharing the same memory location.

Example:
#include<stdio.h>
#include<conio.h>
union std
{

int a;
int b;

};
void main()
{

union std u;
u.a=40;
printf("b=%d\n",u.b);
u.b=50;
printf("a=%d",u.a);
getch();

}

